Identification of a peptide antagonist to the peripheral-type benzodiazepine receptor that inhibits hormone-stimulated leydig cell steroid formation.

نویسندگان

  • Maria Gazouli
  • Zeqiu Han
  • Vassilios Papadopoulos
چکیده

Peripheral-type benzodiazepine receptor (PBR) is an 18-kDa high-affinity cholesterol and drug ligand-binding protein involved in various cell functions, including cholesterol transport and steroid biosynthesis. To aid our investigation of the biological function of PBR, we have set out to identify functional antagonists. By screening phage display libraries, we have identified peptides that displace the high-affinity PBR benzodiazepine drug ligand, Ro5-4864 (4'-chlorodiazepam). Among these peptides, STPHSTP was the most potent (IC(50) = 10 microM). All of the isolated peptides showed a conserved motif STXXXXP. The role of these peptides in Leydig cell steroidogenesis was examined using a transducible peptide composed of the TAT domain of human immunodeficiency virus and the peptides under investigation. Synthesized peptides efficiently transduced into MA-10 Leydig cells, and the peptide TAT-STPHSTP inhibited Ro5-4864- and human chorionic gonadotropin-stimulated steroid production in a dose-dependent manner (ED(50) = 5 microM). TAT-STPHSTP behaved as a competitive PBR antagonist, which did not affect 22R-hydroxycholesterol-supported steroidogenesis. These results yield leads for the development of potent PBR antagonists and indicate that endogenous PBR agonist-receptor interaction is critical for hormone-induced steroidogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor α.

In this study, we hypothesized that many of the reported effects of phthalate esters and other peroxisome proliferators (PPs) in the testis are mediated by members of the PPactivated receptor (PPAR) family of transcription factors through alterations in proteins involved in steroidogenesis. Exposure of Leydig cells to PPs prevented cholesterol transport into the mitochondria after hormonal stim...

متن کامل

The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis.

Testicular mitochondria were previously shown to contain an abundance of peripheral-type benzodiazepine recognition site(s)/receptor(s) (PBR). We have previously purified, cloned, and expressed an Mr 18,000 PBR protein (Antkiewicz-Michaluk, Mukhin, A. G., Guidotti, A., and Krueger, K. E. (1988) J. Biol. Chem. 263, 17317-17321; (Sprengel, R., Werner, P., Seeburg, P. H., Mukhin, A. G., Santi, M. ...

متن کامل

Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells.

Perfluorododecanoic acid (PFDoA) can be detected in environmental matrices and human serum and has been shown to inhibit testicular steroidogenesis in rats. However, the mechanisms that are responsible for the toxic effects of PFDoA remain unknown. The aims of this study were to investigate the mechanism of steroidogenesis inhibition by PFDoA and to identify the molecular target of PFDoA in Ley...

متن کامل

Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line.

To evaluate the role of the mitochondrial peripheral-type benzodiazepine receptor (PBR) in steroidogenesis, we developed a molecular approach based on the disruption of the PBR gene, by homologous recombination, in the constitutive steroid producing R2C rat Leydig tumor cell line. Inactivation of one allele of the PBR gene resulted in the suppression of PBR mRNA and ligand binding expression. I...

متن کامل

Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis.

Steroid hormones are metabolically derived from multiple enzymatic transformations of cholesterol. The controlling step in steroid hormone biogenesis is the delivery of cholesterol from intracellular stores to the cytochrome P450 enzyme CYP11A1 in the mitochondrial matrix. The 18-kDa translocator protein (TSPO) plays an integral part in this mitochondrial cholesterol transport. Consistent with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 303 2  شماره 

صفحات  -

تاریخ انتشار 2002